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A  B  S  T  R  A  C  T   

 
To obtain size distribution of nanoparticles, scanning electron microscope (SEM) and transmission electron 

microscopy (TEM) have been widely adopted, but manual measurement of statistical size distributions from the 

SEM or TEM images is time-consuming and labor-intensive. Therefore, automatic detection methods are de- 

sirable. This paper proposes an automatic image processing algorithm which is mainly based on local adaptive 

Canny edge detection and modified circular Hough transform. The proposed algorithm can utilize the local 

thresholds to detect particles from the images with different degrees of complexity. Compared with the results 

produced by applying global thresholds, our algorithm performs much better. The robustness and reliability of 

this method have been verified by comparing its results with manual measurement, and an excellent agreement 

has been found. The proposed method can accurately recognize the particles with high efficiency. 

 

 
 
 

1. Introduction 

 
Nanoparticles have gained a lot of attention because of their special 

characteristics, such as small size effect, surface effect, quantum effect 

and macro-quantum tunnel effect, which enables them unique chemical 

(Baudouin et al., 2013; Reske et al., 2014) and physical (Houshiar et al., 

2014; Mohammadi et al., 2013) properties. They can be applied in 

various fields including material fabrication (Pandey et al., 2013; 

Tanhaei et al., 2015), drug delivery (Blanco et al., 2015; Couvreur, 

2013), gene detection (Chinen et al., 2015; Shi et al., 2015) and so on. 

The size distribution of the nanoparticles is a primary concern both for 

research and for application, and nanoparticles with narrow size dis- 

tribution are highly desired. 

In order to obtain the size distributions of nanoparticles, scanning 

electron microscope (SEM) and transmission electron microscopy 

(TEM) have been adopted as an effective tool to characterize the mi- 

crostructure of the nanoparticles. SEM mainly uses a focused beam of 

electrons to intact with the surface of specimens to generate various 

signals to form image, while TEM mainly collects the electrons that 

transmit through specimens to form images, both of which can produce 

micrographs approaching nanoscale. To get the statistically meaningful 

size distribution from the micrographs, hundreds of particles need to be 

measured. Currently, the particle size is usually measured manually 

 

(Dastanpour and Rogak, 2014; Lovell et al., 2015; Trandafilović et al., 

2012), which is extremely time-consuming and labor-intensive. In ad- 

dition, manual measurement can also be affected by human interven- 

tion (Woehrle et al., 2006). Therefore, it is necessary to develop other 

efficient, accurate and objective approaches to automatically measure 

the particle size. 

Many automatic image processing algorithms have been developed 

to provide  much more accurate measurement  of large numbers of 

particles from the microscopy images. Wu and Yu (2012) has analyzed 

the particle size with the assistance of image processing algorithms, but 

they are not suitable for qualifying the sizes and distributions of na- 

noparticles. Based on watershed segmentation, a semi-automatic image 

processing method has been proposed by De Temmerman et al. (2014) 

to recognize the minimal size in one dimension of primary particles in 

aggregated nanomaterials. Dastanpour et al. (2016) has developed a 2- 

D pair correlation function to analyze nanoparticle aggregates from 

TEM images, but only the mean primary particle diameter can be ob- 

tained by this method. One of the most recent studies has been con- 

ducted by Mirzaei and Rafsanjani (2017). They have developed an 

image processing algorithm based on several pre-processing techniques 

and circular Hough transform (CHT) to directly get the size distribution 

of nanoparticles from the micrographs. CHT is a powerful method to 

detect   circular   objects,   which   has   been   studied   extensively 
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Fig. 1. Block diagram of the proposed algorithm. 

 

Fig. 2. (a) Original image of porous hollow carbon nano- 

spheres (He et al., 2013). (b) Image after preprocessing. Scale 

bar = 400 nm. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. (Left column) (a) Image without any segmentation. 

(b) Image segmented into 8 × 8. (Right column) The corre- 

sponding binary edge detection results. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(Lappalainen and Lehmonen, 2012; Pei and Horng, 1995; Rizon et al., 

2005; Smereka and Duleba, 2008; Yuen et al., 1990). However, in their 

studies, the binary results are obtained by adopting a single global 

threshold value to process the entire image. Indeed, good results can be 

obtained if the edge pixels of the particles show a sufficiently different 

intensity from the background. But for most cases, the gray level, noise 

and illumination for different parts of a same image vary significantly, 

which makes it really impractical to get a good binary result by setting a 

single specific value for thresholding the whole image. To address the 

problem, local attributes must be taken into consideration. Many 

groups have conducted researches on image processing based on local 

attributes (Hemachander et al., 2006; Cervera et al., 2011; Sun and Cai, 

2014), the results of which have demonstrated its benefits for dealing 

with complex images. Hence, to detect particles from images with high 
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Fig. 4. Two stages of the modified CHT. In (a), a 2D Hough 

Transform is established by edge detection  information  to 

find circle center coordinates. In (b), a radius histogram is 

plotted to find the most reasonable radius of the circle. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. (a) Overlapped image of the original image and the 

result by applying modified CHT to Fig. 3a. (b) Overlapped 

image  of  the  original  image  and  the  result  by  applying 

modified CHT to Fig. 3b. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6. Comparison of the particle size distributions by manual measurement and by our 

algorithm. 

 
complexity, an algorithm which can utilize local thresholds is devel- 

oped. 

In this paper, a simple image processing algorithm based on local 

adaptive Canny edge detection (ACED) and modified CHT is presented. 

The proposed method can rapidly measure the particle size distribution 

with high precision. The local ACED can segment the image into many 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

square sub-images and automatically find the local high and low 

threshold values of each sub-image for further edge detection. 

Compared with the global ACED which utilizes the global threshold 

values of the whole image, a much better binary result with more edge 

characteristics can be obtained. The obtained binary result will be 

further analyzed by modified CHT to detect circular particles. The re- 

liability and robust of the proposed algorithm are verified by comparing 

its results with manual measurement data. 

 
2. Proposed methodology 

 
Fig. 1 presents a simplified block diagram of the proposed algo- 

rithm. SEM and TEM are very sensitive to instrumental and environ- 

mental disturbances, such as mechanical vibration, magnetic field in- 

terference, power supply instability and so on, which can introduce 

many noises to the recorded images (Jones and Nellist, 2013; Muller 

et al., 2006). Therefore, before applying local ACED, graying and de- 

noising are adopted in image preprocessing step to improve the quality 

of the micrographs. Then, the local ACED which can adaptively utilize 

the local threshold values is implemented for image edge detection. 

After that, the modified CHT is presented to accurately recognize the 

circular particles. Figs. 2, 3, 5 and 6 demonstrate an example of the 

outputs of each step where the above image processing algorithm is 

implemented. A detailed description of the proposed algorithm is in- 

troduced as follows. 

 
2.1. Preprocessing 

 
The image preprocessing involves graying and denoising. Since only 
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Fig. 7. (a) Original image of palladium nanoparticles de- 

posited on pristine graphene (Vats et al., 2016). (b) Over- 

lapped image of the original image and the result by applying 

global ACED. (c) Overlapped image of the original image and 

the result by applying our algorithm. The image is segmented 

into 7 × 7 sub-images. (d) Comparison of the particle size 

distributions by manual measurement and by our algorithm. 

Scale bar = 250 nm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

morphologic information is needed during particle detection, gray 

processing is applied here to eliminate color information so as to reduce 

the complexity of operation. 

Denoising is a very important step to reduce statistical perturbations 

and recover some underlying signals. Typically, an image may involve 

four types of noise, namely salt and pepper noise, Gaussian noise, 

speckle noise and Poisson noise. There have been several filters to de- 

noise image, including linear space filter, non-linear space filter, fre- 

quency filter and so on, among which median filter, a kind of non-linear 

space filter, has been widely used to remove salt and pepper noise due 

to its effective noise suppression ability and high computational effi- 

ciency (Yazdi and Homayouni, 2010). The main process of median filter 

is to run through the image pixel by pixel and replace each pixel with 

the median of filter window. In addition, median filter can also at- 

tenuate speckle noise and Poisson noise to some extent (Goyal et al., 

2002). For the microscopy images, salt and pepper noise has been 

generally observed (Shanmugavadivu and Jeevaraj, 2014). Thus, 

median filter has been adopted in our algorithm to filter out the image 

noise. In local ACED, Gaussian filter will be adopted to suppress 

Gaussian noise, which will be applied in the next part. 

Fig. 2a presents the original SEM image of porous hollow carbon 

nanospheres synthesized by He et al. (2013). The image shows a large 

number of overlapped particles and uneven background, which is even 

very difficult to separate and measure by eyes. Fig. 2b is the output after 

graying and median filtering. As is shown in the image, median filter 

can effectively preserve the important image characteristics, and at the 

same time, remove the pixels which stand out from their surrounding 

pixels. However, it also needs to be mentioned that it can result in a 

slight decrease in the image sharpness. 

2.2. Local adaptive Canny edge detection 

 
Image edge is an important feature for computer vision algorithms. 

Several edge detection operators have been developed, such as Roberts, 

Prewitt, Kirsch, Sobel, Robinson, Canny and so on (Muthukrishnan and 

Radha, 2012). Compared with the other edge detection algorithms, 

Canny edge detection can provide much better and more reliable edge 

detection results, and it has become the criterion for evaluating other 

methods. 

Canny edge detection is based on a multistage algorithm, and two 

key thresholds, high threshold Th and low threshold Tl, are adopted to 

detect and connect edges (Canny, 1986). Traditionally, the two 

threshold values require human intervention, the proper values of 

which are usually difficult to choose for different images. Thus, ACED 

algorithms, whose Th and Tl can be obtained automatically, have been 

developed. Lu et al. (2006) has proposed an improved method to set the 

thresholds according to the gray-scale histogram, but this method may 

cause some fake edges. Fang et al. (2009) applied Otsu algorithm to get 

Th, and Tl is obtained by multiplying Th by a coefficient less than one, 

specifically 0.5. This method has been proved as an effective way for 

edge extraction. However, it has to be noticed that the adopted two 

threshold values mentioned above are two global values, which are 

obtained based on the whole image. For images with uneven back- 

ground, this method may lose some local characteristics. To improve 

the accuracy of ACED, a local ACED, which can utilize the local Th and 

Tl, has been developed to detect the object edges. 

Detailed steps of the proposed local ACED are as follows: 

 
1. Select how many sub-images to use and automatically segment the 

whole image into the required number. 



Y. Meng et al. Micron 106 (2018) 34–41 

38 

 

 

 

Fig. 8. (a) Original image of silver nanoparticles (Jiao et al., 

2014). (b) Overlapped image of the original image and the 

result by applying global ACED. (c) Overlapped image of the 

original image and the result by applying our algorithm. The 

image is segmented into 8 × 8 sub-images. (d) Comparison of 

the particle size distributions by manual measurement and by 

our algorithm. Scale bar = 50 nm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2. Calculate local Th and Tl of each sub-image, individually. Th is ob- 

tained by Otsu algorithm, while based on our experiments, Tl is 

settled as 0.4Th. Same coefficient has been adopted by Lu et al. 

(2006) and Hou and Liu (2012). 

3. Apply Gaussian filter to filter out Gaussian noise. 

4. Calculate magnitude and direction of gradient. 

5. Apply non-maximum suppression to gradient value. This step will 

remove some non-edge pixels and extract candidate edges, the 

function of which is kind of like thinning edges because this step can 

highlight the most likely edge pixels and weaken other pixels. 

6. Apply local Th and Tl to detect and connect edges of each sub-image. 

A binary result can be produced after this step. If a pixel’s gradient is 

higher than Th, consider this pixel as an edge pixel. If a pixel’s 

gradient is lower than Tl, mark this pixel as background. Otherwise, 

only mark this pixel as edge when it is connected to a pixel whose 

gradient is higher than Th. 

7. Merge the processed sub-images into an integrated image. 

 
The edge detection results by adopting global ACED and local ACED 

are shown in Fig. 3. Fig. 3a presents the image without any segmen- 

2.3. Modified circular Hough transform 

 
After the implementation of the local ACED, a binary result with 

detailed edge information will be generated. Then, a modified CHT will 

be adopted to detect circular particles from the binary result. Hough 

transform was initially proposed by Hough (1962) to detect geometric 

features, and the widely adopted Hough transform was invented by 

Duda and Hart (1972). The Hough transform is realized by a voting 

procedure in a special parameter space. The classic Hough transform is 

mainly designed for line detection, but later it has been expanded to 

identify other shapes (Ballard, 1981). CHT, a specialization of Hough 

Transform, has been proved as a powerful and effective way to detect 

circular objects. 

The main principle of CHT is to transform geometric coordinates (x, 

y) into Hough parameter space. Hough parameter space contains three 

parameters, namely a, b and r, which can be obtained by the following 

equations. 
 

(x − a)2 + (y − b)2 = r2                                                                                                        (1) 

tation and global Th and Tl will be used. Fig. 3b illustrates the image by 

adopting local ACED. The image is segmented into 8 × 8 square sub- 

divisions, and different Th  and Tl  will be calculated within each sub- 

a = x − r·cos θ 

 
b = y − r·sin θ 

(2) 

 
(3) 

division individually. As is shown in the right column, compared with 

global ACED, although local ACED can cause discontinuity for some 

edges due to image segmentation, more edges can be detected, which 

can produced a more detailed binary result for the following processing. 

where θ is the angle upwards from the x axis, (a, b) is the circle center 

and r is the circle radius. Each point of a circle in geometric coordinates 

will vote for one point in Hough parameter space. An accumulative 

matrix based on votes in Hough parameter space will be constructed. 

Points which have high number of votes in Hough parameter space will 

be corresponded to circle candidates in geometric coordinates. 

However, the above standard CHT requires a three dimensional 

space (a, b, r) to process images, which results in a low computation 
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Fig. 9. (a) Original image of the well-dispersed silver nano- 

particles reduced by sodium borohydride in the presence of 

gelatin (Sivera et al., 2014). (b) Overlapped image of the 

original image and the result by applying global ACED. (c) 

Overlapped image of the original image and the result by 

applying our algorithm. The image is segmented into 7 × 7 

sub-images. (d) Comparison of the particle size distributions 

by  manual  measurement  and  by   our   algorithm.   Scale 

bar = 50 nm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

speed and a large storage space. To improve its performance, a modified 

CHT, two-stage Hough transform, which can speed up the computation, 

has been proposed by Yuen et al. (1990). The modified CHT mainly 

decomposes the standard CHT into two stages, a two dimensional ac- 

cumulative matrix to find the circle center (a, b) and a one dimensional 

histogram to determine circle radius r. Fig. 4a and b demonstrate the 

two stages of the modified CHT, respectively. In Hough parameter 

space, the first stage will integrate all values along the radius axis at a 

single value of (a, b). An accumulative matrix will be generated, the 

local peaks of which will be regard as the circle centers. In the second 

stage, constrained by circle center (a, b) and Eq. (1), a radius histogram 

will be obtained for each candidate circle center, the peak of which is 

the desired radius. In spite of adding an additional step, this method can 

save the overall computation speed and storage space, especially for 

dealing with particles with a large radius range. 

The realization of modified CHT is presented as follows: 

 
1. Calculate accumulator matrix. Every pixel (x, y) will be calculated to 

vote for parameter (a, b). 

2. Determine the centers of circles. The local peak values of the ac- 

cumulator matrix will be regarded as the circle centers. 

3. Determine the radius by radius histogram around each circle center. 

 
Fig. 5a and b shows the overlapped images of the circle detection 

result and original image by implementing modified CHT to the binary 

results of Fig. 3a and b, respectively. Same sensitivity value of detecting 

circles has been applied to ensure the fair and valid comparisons. It can 

be found that Fig. 5b which processes the binary image with more 

detected edges presents more detected circles. Overall, the detected 

 

circles for Fig. 5a and b is 123 and 141, separately. 
 

 
2.4. Postprocessing 

 
After the above process, parameters (a, b, r) of each particle will be 

stored. The particles’ mean radius and size distribution can be obtained. 

The automatic detection results will be further compared with the data 

acquired by manual measurement. 

Fig. 6 presents the particle size distributions by manual measure- 

ment and by our algorithm which adopts local ACED. The figure shows 

that the particle size distributions of the two measurements are in high 

agreement with each other. The number of particles detected by manual 

measurement is 133, which is less than the number recognized by our 

proposed algorithm. This is because the particles are highly overlapped 

in the image, which induces some circles hard to be distinguished by 

manual measurement. In addition, for some particles that are overly 

truncated at the border of the image or mostly occluded by others, they 

are not included in manual measurement. The mean diameters for 

manual  measurement  and  the  proposed  algorithm  are  quite  close, 

178.20 nm and 176.58 nm, respectively. 
 

 
3. Results and discussion 

 
To further verify our algorithm, three other examples with different 

degrees of overlapped particles and uneven backgrounds are analyzed. 

The results generated by applying local ACED have been compared with 

the results produced by applying global ACED. To ensure valid com- 

parison, when applying the modified CHT, same sensitivity value has 

been adopted. 
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Fig. 7a is the original TEM image of palladium nanoparticles de- 

posited on pristine graphene (Vats et al., 2016). The image shows a very 

complex background with many veins of graphene and some particles 

do not stand out. Fig. 7b and c are the processed images by applying 

global ACED and by applying our algorithm, respectively. It can be 

found that when applying global ACED to the image, nearly 25% par- 

ticles are missed, the detection result of which is unacceptable. By 

contrast, our algorithm which applies local ACED demonstrates a much 

better recognition and only few particles are not detected. The particle 

size distributions by manual measurement and by our algorithm are 

illustrated in Fig. 7d. The number of particles detected by the proposed 

algorithm is 115 with a mean diameter of 14.54 nm, while the same 

parameters by manual measurement are 111 and 14.92 nm respec- 

tively. Besides some undetectable particles for counting by eyes, the 

other reason behind this difference is that some particles are not in 

perfect circular shape and CHT may split them into two circles to match 

the most region of these particles. 

The next example presented in Fig. 8a is the TEM image of silver 

nanoparticles (Jiao et al., 2014). The nanoparticles in this image show 

un-uniform contrast from the background and this image is very blurred 

and includes some overlapped particles. Fig. 8b and c are the circle 

detection results. Compared with Fig. 8b, c which utilizes the global 

threshold values can identify 206 particles, which is less than our 

proposed algorithm. The size distributions of the nanoparticles are 

given in Fig. 8d. Our proposed method can recognize 219 particles with 

a mean diameter of 10.84 nm. According to the manual measurement, 

these values are 215 and 10.74 nm. Only a small error between the two 

measurements can be observed. 

Fig. 9a shows the TEM image of the well-dispersed silver nano- 

particles reduced by sodium borohydride in the presence of gelatin 

(Sivera et al., 2014). The image is very grainy, some particles in which 

are even very hard to be recognized by manual measurement. Con- 

sidering the background is relatively even, the detected numbers pre- 

sented in Fig. 9b and c are both 117. Fig. 9d illustrates the size dis- 

tributions which are obtained by manual measurement and by our 

proposed algorithm. The detected particle number by manual count is 

115 which is two less than the automatic measurement’s, while the 

mean diameters are 4.02 nm and 3.84 nm respectively. This error can 

be attributed to the indiscernible particle edges shown in the image. 

 
 

4. Conclusions 

 
To manually obtain the particle size distribution from SEM or TEM 

images is inefficient and can bring some potential subjective errors. To 

address this problem, an image processing algorithm which can auto- 

matically measure the particle size in different noises, overlapped 

particles and uneven backgrounds has been developed in this paper. 

Apart from some pre and post processing procedures, the main process 

of the proposed algorithm is based on local ACED and modified CHT. 

The local ACED can utilize the local threshold values, specifically Th 

and Tl, within each sub-image to get the detailed binary edge detection 

results. Afterwards, the modified CHT which simplifies the computation 

complexity is adopted to speed up the recognition of circular particles. 

Results generated by the proposed algorithm are in good agreement 

with the manual measurements. Only small errors are observed in re- 

gards of the detected number and mean diameter. The robust and ef- 

ficient algorithm can measure the particles with high precision, and it 

can be applied in the statistical analysis of large numbers of micro- 

graphs, especially for the micrographs with complex backgrounds. 
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